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Modal MRTD Approaches for the Efficient Analysis
of Waveguide Discontinuities
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Abstract—In this paper, the multi-resolution time-domain
(MRTD) technique is applied to the waveguide discontinuity
problem for the fast-scattering parameter computation. To im-
prove the computational efficiency, both three-dimensional (3-D) 2
waveguide region, including discontinuities, and one dimensional 1 : &
(1-D) homogeneous waveguide region, terminated with the modal ey
absorbing boundary condition (ABC), are simulated in the % " *‘bp
wavelet domain with the mode composition/expansion algorithm b : *:
from the modal analysis. A WG-90 rectangular waveguide with e
a thick asymmetric iris is analyzed and the numerical results
are compared with conventional finite-difference time-domain

(FDTD) results and mode-matching results. %, g
Index Terms—FDTD method, modal analysis, MRTD method, g
waveguide. ﬁt—, ]
|. INTRODUCTION

g . . . Fig. 1. WG-90 rectangular waveguide with a thick asymmetric iris.
HE finite difference time-domain (FDTD) method pro- 9 9 9 Y

vides arelatively simple way of modeling various comple orption techniques are implemented in the wavelet domain with

structures and.has beeq one of the most powerful tools for the. '\~ r-wavelet MRTD scheme 3].
analysis of various applied electromagnetic problems [1]. Re-
cently, to improve the computational efficiency, the multireso-
lution theory has been applied to the FDTD method and leads to
multi-resolution time domain (MRTD) techniques [2]-[4]. The Fig. 1 shows the geometry of a WG-90 rectangular wave-
MRTD approaches have been applied to analyze various el@gide with a thick asymmetric iris. In the conventional FDTD
tromagnetic structures with success [5] and also employed in gigulation with the unimodal ABC, the uniform auxiliary
analysis of waveguide discontinuity problems [6]-[8] to obtaiWaveguide of the input—output ports is introduced to attenuate
savings in memory or computation time. the evanescent waveguide modes and extract the dominant

For the scattering parameter computation of waveguide digaveguide mode, which requires additional numerical costs
continuity problems with the conventional unimodal absorbirgr the analysis of waveguide discontinuities (3-D FDTD prob-
boundary condition (ABC), considerable numerical costéms). This difficulty can be solved by applying modal analysis
are required because one simulates a long uniform auxilidgehniques, such as the mode composition/expansion algorithm
waveguide of input—output port in order to extract the dominagfd modal ABCs, based on the orthogonality of modes in a
waveguide mode. However, this difficulty can be overcome Hipllow waveguide (1-D mode FDTD problems). Moreover,
simulating one-dimensional (1-D) mode wave equation ahMdRTD gives us the opportunity to further improve numerical
imposing appropriate boundary conditions on each waveguigéiciencies by reducing computation time or memory storage.
mode at the input—output ports [9]-[11]. Therefore, the proposed scheme employs multiresolution

In this paper, the MRTD technique is applied to the wavéheory in both 3-D waveguide region of discontinuities (3-D
guide discontinuity problem for the fast scattering paramet®RTD problems) and 1-D homogeneous waveguide region of
computation. To improve the computational efficiency and géte input—output ports (1-D mode MRTD problems) as shown

the advantages of both MRTD and modal analysis, modal dB-Fig. 2.
Three—dimensional (3-D) MRTD difference equations and

1-D mode MRTD difference equations are obtained by dis-
cretizing the differential form of the Maxwell’s equations and
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Fig. 2. Proposed algorithm to improve the computational efficiency of the FDTD simulations.

1-D and 3-D MRTD formulations in the physical domainwavelet domain mode composition/expansion equations as

which employs the same equations as the FDTD formulatiéollows (MRTD-MRTD-MRTD) in (2a) and (2b), shown at

(MRTD-FDTD-MRTD) [9]-[11]. In the parlance of the MRTD the bottom of the page, where the basis functi®as ¢¢, ¢,

formulation, these equations can be rewritten as follows e, i and( = ¢, 1 are along the cross section of the wave-
guide @—y plane) and the propagation direction¢oordinate),

n B = ZZ ¢ e? (1a) respectively. The wavelet coefficients of the transverse electric
9 field pattern of themth order modec$, can be obtained by
n oo b the inner product between the transverse electric field pattern
ZZijkEt “ijCm . . . . s
75 and the corresponding basis functions. The main distinction
WV = (1b) between this and the former scheme is the location of the mode

m PP . ;
ZZJ”G’" * composition/expansion plane. In the MRTD-MRTD-MRTD
v scheme, the distance between mode composition plane and

wherekL,, V,,,, ande,, are the wavelet coefficients of the transa odbel eg;lpalnsmtnh pl?tnr? ']? two cellhs long C,!n space[Ew?lch is
verse electric field, the modal amplitude of the orderand the Vou Ve te;ng do € tohrmer SCI ?n;e on\éer?rl]o plo let
transverse electric field pattern of theth order mode, respec- "™ (Vin 10 E,) is done in the wavelet domain by the wavele

tively. The integer, j, andk% indicate that the correspondingdomam_rnOde expansion (2b) [the wavelet domain moqle
basis function is located at = iAz, y = jAy, andz = kAz composition (2a)]. Ther_w, we can apply f[h_e wavelet domain
in the spatial lattice. The index denotes temporal grid point modal ABC to the dominant modal coefficient and the short

t = nAt. (1) assumes uniform spatial and temporal grid, anc‘drcwt condition to the higher order modal coefficients.

the summation in (1b) is done over the waveguide cross section.
Conversion otﬁt toV,, (V,. to Et) is done by mode expansion
(mode composition) of the transverse electric field (the modal The WG-90 rectangular waveguide with a thick asymmetric
amplitude) obtained from the basis transformation relation bieis shown in Fig. 1 is analyzed with the modal PML technique
tween the physical domain field values and the wavelet domdi?] via FDTD simulations and the proposed schemes. In the
field coefficients on the mode expansion plane (the mode coproposed schemes, the modal PML for the dominant waveguide
position plane) [3]. Then, we can transform the physical domainode and the edge condition for singularities near an asym-
modal amplitude into the wavelet domain modal coefficientmetric iris [13] are implemented with the Haar-wavelet MRTD
and apply appropriate boundary conditions (the modal ABC fecheme. In the fine grid FDTD simulation, the space step sizes
the dominant mode and the short circuit condition for the highare Az = 0.381 mm, Ay = 1.016 mm, andAz = 1 mm.
order modes) to these coeffiecients. The time step size iAt ~ 0.95 ps and the number of time it-
The second choice treats the interface between 1-D and 2iations is 4000. In MRTD simulations, the space step sizes are
MRTD formulations in the wavelet domain, which uses thé\z = 0.762 mm, Ay = 2.032 mm, andAz = 2 mm. The

[ll. NUMERICAL RESULTS
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Fig. 3. Scattering parameters with the different simulation methods. [4]
TABLE |
COMPARISON OF THECOMPUTATION TIME OF THE FINE GRID FDTD AND
THE PROPOSEDMETHODS

(3]

Modal MRTD approaches [6]

Fine grid FDTD

MRTD-MRTD-MRTD | MRTD-FDTD-MRTD

(71
(8]

Simulation Time 61.07 sec 64.87 sec

107.6 sec ‘

time step size i\t ~ 1.9 ps and the number of time iterations [9]
is 2000. Analysis conditions of the coarse grid FDTD are the
same as those of MRTD simulations. All simulations were peryy g
formed on a Pentium-IIl PC machine (650 MHz CPU and 128
Mbytes RAM).

Fig. 3 shows scattering parameters of the waveguide witI[|11]
different methods. The results of the fine grid FDTD, mode
matching method, and the proposed schemes show better agrie—
ment than the coarse grid FDTD. Table | shows the computatio
time of the fine grid FDTD and the proposed schemes. The re-
sults show that the proposed approaches provide comparable n[ij3]
merical accuracy for structure of interest with the reduced sim*
ulation time.
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IV. CONCLUSION

We have approached the problem of scattering param-

computation of waveguide structures by combining

the Haar-wavelet MRTD scheme with the mode composi-
tion/expansion algorithm and the modal ABC based on the
orthogonality of modes in a hollow waveguide. Numerical

results demonstrated that the computational efficiency is further
improved by the proposed schemes.
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